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More on the Cross Product



NOTE: Much of this chapter is what you would learn in Multivariable Calculus.
You might find it interesting/useful to read.

But I will only cover the material important to this course.
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Proof.
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Theorem (Properties of the Cross Product)

Let @, ¥ and W be in R3.
1. @ x V is a vector.
2. U x V is orthogonal to both U and V.
3.ix0=0and 0x =0
4. @xd=0.
5. Ux V=—(¥Vx1)
6. (ki) x Vv =k(U x V) = 4 x (k¥) for any scalar k.
T UX(V4+W)=UXV+UXW
8. (V4 W) XxU=Vxid+wxd



Theorem (The Lagrange Identity)

If @,V € R3, then
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Theorem (The Lagrange Identity)

If @,V € R3, then

— 112112112 SN2
[[a < V[ = [[g][7][¥]]" — (T ¥)"
Proof.
a1 bl
Write @ = | a2 | and V= | bz |, then both sides are equal to
as b3

(a1bs — a2b1)2 + (albs — 33b1)2 + (aQbS — 33b2)2 .

Work out these by yourself!



As a consequence of the Lagrange Identity and the fact that

—

-V = [[d]] |[¥]| cos b,

we have

= |JFPIFIP = (- 9)?

= [F[P¥I* = [Tl |¥]]* cos® 0
= [Jal*||¥]1*(1 — cos® 0)

112112112 :.02
[1[[*[[¥]]” sin” 6.



As a consequence of the Lagrange Identity and the fact that

-V = |[[d|] ||¥]| cos 0,
we have
= [JalP|I¥? - (@ 9)?
= [J@l*1¥* = [[T@]*[[9]]* cos® 0
= [[T@P[[F][*(1 = cos0)
|15 [¥|? sin® 6.
Taking square roots on both sides yields,

|[T x ¥|| = ||d]| ||¥]| sin 6.
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As a consequence of the Lagrange Identity and the fact that
-7 = ||| 7] cos o,
WENEE]
= |[@P9° - @9
= |IFIP91° = [T 19]]* cos™ 6
= JJ[[¥]*(1 — cos™ 0)
11 [|¥]|* sin” 6.
Taking square roots on both sides yields,

([T > 9| = [[g]] [[¥]]sin 0.

Note that since 0 < 0 < 7, sinf > 0.

If0 =0o0r0=m,thensind =0, and ||d x V|| = 0. This is consistent with our
earlier observation that if ' and ¥ are parallel, then @ x vV = 0.
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Let @ and ¥ be nonzero vectors in R?, and let 6 denote the angle between
and V.

1. |Jd x V|| = [|[d]] ||V]| sin 6, and is the area of the parallelogram defined
by @ and V.
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Since sinf = , we see that h = ||V|| sin@. Therefore, the area is

(Gl [1¥]] sin 6.



Theorem

The volume of the parallelepiped determined by the three vectors S, ¢, and
ain R? is

Proof.

Volume = base area xh, where base area = |b x & and the height
h = |&]| cos(a)|. Hence,

Vol = |b x & |&]| cos()| = |(b x T) - &].
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Problem

Find the area of the triangle having vertices A(3,—1,2), B(1,1,0) and
C(1,2,-1).

Solution

The area of the triangle is half the area of the parallelogram defined by ﬁ

—2 —2
and ﬁ ﬁ = 2 | and R = 3 |. Therefore
-2 -3
0
ﬁ X ﬁ =\ -2 1,
)

so the area of the triangle is %Hﬁ X m“ =2 |



Problem

Find the volume of the parallelepiped determined by the vectors
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Problem
Find the volume of the parallelepiped determined by the vectors

2 1 2
i={11(,v=1] 0 |,and W= 1

1 2 —1
Solution

The volume of the parallelepiped is

% - (i x ¥)| = |det

— =N
N O =
[
I
[N}
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